Question Number	Answer		Mark
1(a)	A radioactive atom has an unstable nucleus	(1)	
	which emits α , β , or γ radiation [at least one of $\alpha \beta \gamma$ named]	(1)	2
1(b)	$C \rightarrow {}^{11}_5 B + {}^0_1 e^+ + v_e$		
	Top line correct Bottom line correct	(1) (1)	2
1(c)	Attempt at mass diference calculation	(1)	
	Attempt at conversion from (M)eV to J	(1)	
	$\Delta E = 1.4 \times 10^{-13} (J)$	(1)	3
	Example of calculation:		
	$\Delta E = 10\ 253.6 - 10252.2 - 0.5 = 0.889 \text{ MeV}$		
1(d)	$\Delta E = 0.889$ MeV $\times 1.0 \times 10$ J MeV $= 1.42 \times 10$ J The idea that the sample will not produce radiation for very long		
1(u)	(because carbon-11 has a relatively short half-life)	(1)	
		(1)	
	β particles are not very ionising Or positrons are not very ionising Or		
	boron is safe in small amounts	(1)	2
1(e)	Use of $\lambda t_{1/2} = \ln 2$	(1)	
	$(\lambda = 5.68 \times 10^{-4} \text{ s}^{-1})$		
	Use of $A = A_0 e^{-\lambda t}$	(1)	
	Use $A = 1.58 \times 10^{6}$ Bq in $A = A_{0}e^{-\lambda t}$	(1)	
	$A_0 = 1.2 \times 10^7 \text{ Bg}$	(1)	4
	Example of calculation:		
	$\lambda = \frac{0.693}{1000} = 5.68 \times 10^{-4} \mathrm{s}^{-1}$		
	1220 s		
	$1.58 \times 10^6 \text{ Bq} = A_0 e^{-5.68 \times 10^{-4} \text{ s}^{-1} \times 60 \times 60 \text{ s}}$		
	$\mathbf{A}_0 = 1.22 \times 10^7 \ \mathbf{B}\mathbf{q}$		
	Total for quantian		12
	1 otal for question		13

Question	Answer	Mark
2(a)	$14 N_{1} + 1_{12} + 12 C_{1} + 3 I_{1}$	
	$_7 N +_0 n \rightarrow _6 C +_1 H$	
	(1) Top line correct	
	Bottom line correct (1)	
2(b)(i)	Background radiation would increase the count rate (by a constant amount)	2
2(0)(1)	Or Background count rate has to be subtracted (from the activity)	
2(b)(ii)	Pacord the count for a long period of time	1
2(0)(11)	Or Pacord the count more than once and find an average value	
2 (b)(:::)	(1)	1
2(D)(III)	Use of $\lambda t_{1/2} = \ln 2$ (1)	
	Use of $A = A_0 e^{-\lambda t}$ (1)	
	$\begin{array}{c} \text{Correct time identified (65 years)} \\ \text{A} = 42 \text{ Pz} \end{array} $	
	$A_0 = 42 \text{ Bq} \tag{1}$	
	Or (i)	
	Use of $A = \frac{A_0}{2^x}$ (1)	
	Correct time identified (65 years) (1) t	
	Use of $x = \frac{t}{t_{1/2}}$ (1)	
	$A_0 = 42 \text{ Bq} \tag{1}$	
	Example of calculation	
	$\frac{1}{1} \ln 2 = 0.693 = 0.0562$	
	$\lambda = \frac{1}{t_{1/2}} = \frac{12.3 \text{ year}}{12.3 \text{ year}} = 0.0563 \text{ year}^{-1}$	
	$A = A_0 e^{-\lambda t}$	
	$\therefore 1.08 \text{Bq} = A_0 e^{-0.0563 \text{year}^{-1} \times 65 \text{year}}$	
	$A = \frac{1.08Bq}{4.21Bc}$	
	$A_0 = \frac{1}{0.0257} = 42.1 \mathrm{Bq}$	4
2(c)(i)	Mass difference calculation (1)	
	Conversion to kg (1)	
	Use of $\Delta E = c^2 \Delta m$ (1)	
	$\Delta E = 2.8 \times 10^{-12} \text{(J)} \tag{1}$	
	Example of calculation	
	$\Delta m = (3.0155 + 2.0136) u - (4.0015 + 1.0087) u = 0.0189 u$	
	$\Delta m = 0.0189 \text{ u} \times 1.66 \times 10^{-27} \text{ kg u}^{-1} = 3.14 \times 10^{-29} \text{ kg}$	
	$\Delta E = c^{2} \Delta m = (3 \times 10^{\circ} \text{ m s}^{-1}) \times 3.14 \times 10^{-29} \text{ kg} = 2.82 \times 10^{-12} \text{ J}$	4

2(c)(ii)	MAX 2		
	Very high temperatures [accept $T \sim 10^7$ K]	(1)	
	so that nuclei have sufficient energy to come close enough to overcome electrostatic repulsion [accept reference to strong interaction]	(1)	
	A collision rate large enough to sustain fusion (from a very high density)	(1)	2
	Total for Question		14

Question Number	Answer		Mark
3(a)	$\begin{bmatrix} 10^{6} \\ 10^{4} \\ 10^{2} \\ 10^{2} \\ 10^{-2} \\ 10^{-2} \\ 10^{-2} \\ 10^{-4} \\ 40000 & 20000 & 10000 & 5000 & 2500 \\ \hline T/K \end{bmatrix}$		
(i)	Sun's position identified [single point identified]	(1)	
(ii)	White dwarf region Red giant region	(1) (1)	3
*3(a)(iii	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate) White dwarf stars have: high temperature <i>T</i> (because λ_{max} is small) low luminosity <i>L</i> $L = \sigma AT^4$ linked to a determination of the surface area	(1) (1) (1)	3
3(b)	The star cools, so temperature <i>T</i> reduces The star contracts (under gravitational forces), so area <i>A</i> reduces $L = \sigma AT^4$ hence L is reduced (mark dependent upon either mp1 or mp2)	(1) (1) (1)	3
3(c)(i)	$ {}^{7}_{3}\text{Li} + {}^{1}_{1}\text{X} \longrightarrow 2 \times {}^{4}_{2}\text{He} $ X is a proton [Accept X is hydrogen/H]	(1) (1)	2
3(c)(ii)	Attempt at calculation of mass difference Use of 1 MeV = 1.60×10^{-13} J $\Delta E = 2.77 \times 10^{-12}$ (J) Example of calculation: $\Delta m = 6533.8 \text{MeV/c}^2 + 938.3 \text{MeV/c}^2 - (2 \times 3727.4 \text{MeV/c}^2) = 17.3 \text{MeV/c}^2$ $\Delta E = 17.3 \text{MeV}$ $\Delta E = 17.3 \text{MeV} \times 1.60 \times 10^{-13}$ J MeV ⁻¹ = 2.768×10^{-12} J	(1) (1) (1)	3

3(d)	Max 4			
	•	Extremely high temperature and density needed	(1)	
	•	High temperature because nuclei need high energy to overcome the		
		(electrostatic) repulsive force	(1)	
	•	Since nuclei must come very close for fusion to occur		
		Or since nuclei must come close enough for (strong) nuclear force to act	(1)	
	•	Very high density is needed to maintain a sufficient collision rate	(1)	
	•	Reference to extreme conditions leading to containment problems	(1)	4
	Total f	or Question		18